www.millotech.com

?RRPARED BY: DATE	SHARPR LIQUID CRYSTAL DISPLAY GROUP SHARP CORPORATION	SPBC NO, LC94Y01
		FILE No.
		ISSUE NOV. 2,1994
4PPROVED BY: DATE		PAGE 23 Pages
		APPLICABLE DIVISION DUUYY PANEL DEVELOPMENT CENTER IITFT DEVELOPMENT CENTER IILCD PRODUCTS DEVELOPMENT CENTER םRL PRODUCTION DEPT.
	SPECIFICATION	

DEVICE SPECIFICATION for

Passive Matrix COLOR LCD Unit
(840x480 dots)
Model No,

LMEAC27P

IICUSTOMER' S APPROVAL
\qquad

BY

BY Inoue
DEPARTMENT GENERAL MANAGER
ENGINEERING DEPARTMENT II
DUTY PANEL DEVELOPMENT CRNTRR
LIQUID CRYSTAL DISPLAY GROUP
SHARP CORPORATION

SPRC No,	MODRL No.	PAGR
LC94Y01	LM64C21P	1

1. Application

This data sheet is to introduce the specification of LM84C21P, Passive Matrix type Color LCD Module,
2. Construction and Outline

Construction: 640x480 dots color display module consisting of an LCD panel, PWB (printed wiring board] with electric components mounted onto, TAB (tape automated bonding) to connect the LCD panel and PWB electrically, and plastic chassis with CCFT back light and bezel to fix them mechanically,
Signal ground (VSS) is connected with the metal bezel, DC/DC converter is built in,

Outline : See Fig, 10
Connection : See Fig, 10 and Table 8

SPEC No.	MODEL No,	PAGE
LC94Y01	LM64C21P	2

3, Mechanical Specifications
Table 1

Parameter	Specifications	Unit
Outline dimensions	$216,0(\mathrm{~W}) \times 152.4(\mathrm{HI} \times 8.0 \mathrm{MAX}(\mathrm{D})$	$\mathrm{m} \mathbf{m}$
Active area	$163,175(\mathrm{~W}) \times 122,375(\mathrm{H})$	m
Viewing area	$168.8(\mathrm{~W}) \times 128(\mathrm{H})$	
Display format	$640(\mathrm{~W}] \times 480(\mathrm{H}]$ full dots	-
Dot size	$0.085 \times \mathrm{RGB}(\mathrm{W}) \times 0.255(\mathrm{H})$	mm
Dot spacing	0.025	m
\ddagger Base color	Normally black $\ddagger 2$	-
Weight	Approx. 280	\mathbf{g}

\$1 Due to the characteristics of the LC material, the colors vary with environmental temperature,
\$2 Negative-type display
Display data " H ' : ON \rightarrow transmission
Display data ' L': OFF \rightarrow light isolation

4. Absolute Maximum Ratings

4-1 Electrical absolute maximum ratings
Table 2

Parameter	Symbol	MIN.	MAX.	Unit	Remark
Supply voltage (Logic)	$\mathrm{V}_{\text {DD }}-\mathrm{V}_{\mathbf{S s}}$	0	6.0	V	$\mathrm{~T} \mathrm{a}=25{ }^{\circ} \mathrm{C}$
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3	$\mathrm{~V}_{D D}$	V	$\mathrm{~T} \mathrm{a}=25^{\circ} \mathrm{C}$

SPRCNo,	MODRL No.	PAGR
LC94Y01	LM64C21P	3

4-2 Environmental Conditions
Table 3

Item	Tstg		Topr		Remark
	MIN.	MAX.	MIN.	MAX.	
Ambient temperatuer	-25 "c	+80"c	$0{ }^{\circ} \mathrm{C}$	+40 "c	Note 4]
Humidity	Note 1]		Note 1)		No condensation
Vibration	Note 2)		Note 2)		3 directions (X/Y/Z]
Shock	Note 3)		Note 3)		6 directions $(\pm X \pm Y \pm 2)$

Note 1) $\mathrm{Ta} \leqq 40^{\circ} \mathrm{C} . \ldots . .95 \%$ RH Max
$\mathrm{Ta}>40$ " $\mathrm{C} \ldots$. . Absolute humidity shall be less than $\mathrm{T} \mathrm{a}=40$ " $\mathrm{C} / 95 \% \mathrm{RH}$.

Note 2)

Table 4

2 hours for each direction of $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$ (8 hours as total)

Note 3) Accerelation: $\mathbf{4 9 0} \mathrm{m} / \mathrm{s}^{2}$
Pulse width : 11ms
3 times for each direction of $\pm \mathrm{X} / \pm \mathrm{Y} / \pm 2$

Note 4) Care should be taken so that the LCD module may not be subjected to the temperature out of this specification,

SPPC No.	MODEL No,	PAGR
LC 94Y01	LM 64C21P	4

5. Electrical Specifications

5-1 Electrical characteristics
Table $5 \quad T \mathrm{~T}=25{ }^{\circ} \mathrm{C}, \mathrm{V}_{D D}=5 . \mathrm{OV} \pm 0.5 \mathrm{~V}$

Parameter	Symbol	Conditions	Min.	Typ.	Max,	Unit
Supply voltage (Logic)	$V_{D D}-V_{S S}$	Note 1)	4.5	50	5.5	v
Contrast adjust voltage	$\begin{gathered} V_{c o d} \\ -V_{s s} \end{gathered}$	Ta=0 "C	0.80	-	-	V
		T $\mathrm{t}=25$ "C!	1,35	1.95	2.55	v
		Ta=40 "C			2.80	
Input signal voltage	$V_{\text {IN }}$	'H level	0.8VDD	-	$V_{\text {DD }}+0.3$	v
		${ }^{\prime} \mathrm{L}$ ' level	0	-	0.2 VdD	V
Input leakage current	$\mathrm{I}_{\text {IL }}$	'H' level			100	$\mu \mathrm{A}$
		'L* level	-100	-	-	$\mu \mathrm{A}$
Supply current (Logic)	$\mathrm{I}_{\text {D }}$	Note 2)	-	110	170	mA
Rush current (Logic)	Irush	Ts $=25{ }^{\circ} \mathrm{C}$, Power ON	$2 \mathrm{~A}(\mathrm{pk}) \times 20 \mathrm{~ms}+1 \mathrm{~A}(\mathrm{pk}) \times 10 \mu \mathrm{~s}$ max			
Power consumption	Pd	Note 2]	-	500	850	mW

Note 1 Under the following conditions, ;
(1)Immediately after the rise of DISP signal, :2 Ax20 ms
(2)Under the situation that DISP signal is on and kept steady. : $1 \mathrm{Ax} 1 \mathrm{O} \mu \mathrm{s}$

Note 2) Under the following conditions, ;

```
Vcon-Yss : contrast max. (1.95 V TYP)
VDD-Yss=5.0 V, Prame frequency=73 Hz,Display pattera = black/white stripe pattera
```



```
ำด
```

This value is direct current,

5-3 Interface signals
OLCD
Table 6

| Pin No \|Symbol| | | | | Level |
| :---: | :---: | :---: | :---: | :---: |
| 1\| DL4 | Display data signal | | | (Lower) | H (ON), L (0\%P) |
| $2\left\|\gamma_{s s}\right\|$ Ground potential | | | | |
| 3 \| DL5 | Display data signal (Lower] | | | | $\mathrm{H}(\mathrm{ON}), \mathrm{L}$ (OFF) |
| 4 | YD | Scan start-u | | 'H' |
| 5 | DL8 | Display data | al (Lower) | H (ON) , L (0 P\% |
| 6 | LP | Input data | signal | ' $\mathrm{H}^{\prime} \rightarrow{ }^{\prime} \mathrm{L}$ ' |
| 7 | DL7 | Display data | al (Lower) | H (0N) , L (0FF) |
| 8 | $V_{\text {ss }}$ | Ground pote | | |
| 9 | $V_{s s}$ | Ground pote | | |
| 10 | XCK | Data input c | signal | ${ }^{*} \mathrm{H}^{\prime} \rightarrow{ }^{\prime} \mathrm{L}$ ' |
| 11 | DLO | Display data | al (Lower) | H (0N) , L (0FF) |
| 12 | $\mathrm{V}_{\text {con }}$ | Contrast adj | oltage | |
| 13 | DLI | Display data | al (Lower) | H (0N) , L (0FF) |
| 14 | $V_{D D}$ | Power supply | ogic and LCD (5.0 V) | - - |
| 15 | $V_{s s}$ | Ground pote | | |
| 16 | $V_{\text {D }}$ | Power supply | gic and LCD (5.0 V) | |
| 17 | DL2 | Display data | al (Lower) | H (0N) , L (0FFI |
| 18- | DISP | Display con | ignal | H (ON) , L (OPT) |
| 19 | DL3 | Display data | al (Lower) | H (0N), L (0FF) |
| 20 | NC | | | |
| 21 | V_{ss} | Ground pote | | |
| 22 | DU3 | Display data | al (Upper) | H(0N), L (0FF) |
| 23 | DU4 | Display data | al (Upper) | H (ON) , L (OFF) |
| 24 | DU2 | Display data | al (Upper) | H (0N) , L (0FF) |
| 25 | DU5 | Display data | al (Upper) | H (0N) , L (0FF) |
| 26 | DU1 | Display data | al [Upper] | H (0N), L (0FF) |
| 27 | $V_{s s}$ | Ground pote | | - |
| 28 | DU0 | Display data | al (Upper) | $\mathrm{H}(\mathrm{ON}), \mathrm{L}$ (097) |
| 29 | DUB | Display data | al (Upper) | H (0N) , L (0FF) |
| 30 | $V_{s s}$ | Ground pote | | - |
| 31 | DU7 | Display data | al (Upper) | H (0N), L (0FF) |

UCCFT

Pin No	Symbol	Description	Level
1	HV	High voltage lineal (from Inverter)	
2	NC		-
3	GND	Ground line (from Inverter)	

NOTE) Pin No, and its location are shown in Fig, 10,
OLCD
Used connector: DF9B-31P-IV (HIROSE)
Mating connector: DP9B-3IS-1V (HIROSE)
OCCFT
Used connector: BHR-03VS-1
Mating connector:SW03 (4, O) B-BHS or SM02 (8. O) B-BHS (JST)
Ixcept above connector shall be out of guaranty

Pig. 1 Dot chart of display area

Table. 7 Interface timing ratings $(T g=0 \sim 40$ " $\mathrm{C}, \mathrm{VDD}=5 . \mathrm{OV} \pm 0.5 \mathrm{~V})$

Item	Symbol	Rating			Unit
		MIN.	TYP.	MAX,	
Frame cycle $\$ 1$	tPRM	7.69		18.94	ms
YD signal *H' level set up time	tHYS	100			ns
H level hold time	tHYH	100			ns
'L* level set up time	tLYS	100			ns
*L" level hold time	tLYH	40			ns
LP signal * H' level pulse width	tWLPH	200			ns
LP signal clock cycle $\ddagger 3$	tLP	10		70	us
XCK signal clock cycle	tCK	70			ns
*H" level clock width	twCKH	25			ns
L'evel clock width	tMCKL	25			ns
Dat a set up time	tDS	25	5		ns
hold time	tDH	25			IS
LP \uparrow allowance time from XCK \downarrow	til	200			ns
X CK \uparrow allowance time from LP \downarrow	tilf	200			ns
Input signal rise/fall time	tr, tf			\$2	IS

Pig. 3 Interface timing chart

SPEC No.	MODEL No.	PAGE
LC94Y01	LM 64C21P	9

$\$ 1$ LCD unit functions at the minimum frme cycle of 7.89 ms (Maximum frame frequency of $130 \mathrm{HZ})^{*}$
Owing to the characteristics of LCD unit, * shadowing' will become more eminent as frame frequency goes UP, whle flicker will be reduced,

According to our experiments, frame cycle of $12,8 \mathrm{~ms}$ Min. or frame frequency of 78 Hz Max, will demonstrate optimum display quality in terms of flicker and ' shadowing". But since judgement of display quality is subjective and display quality such as 'shadowing' is patturn dependent, it is recommended that decision of frame frequency, to which power consumption of the LCD unit is promotional, be made based on your own through testing on the LCD unit with every possible patterns displayed on it,

*3 The intervals of 1 LP fall and the next must be always the same when the LCD UNIT is active driving, And LP's must be input continuously.
6. Module Driving Method
6.1 Circuit configuration

Pig. 9 shows the block diagram of the module's circuitry.

6. 2 Display Face Configuration

The display consists of 640×3 (R, G, B) x480 dots as shown in Fig, 1.
The interface is single panel with double drive to be driven at $1 / 244$ duty ratio,

B. 3 Input Data and Control Signal

The LCD driver is 240 bits LSI, consisting of shift registers, latch circuits and LCD driver circuits, Input data for each row ($640 \times 3 \mathrm{R}, \mathrm{G}, \mathrm{B}$) will be sequentially transferred in the form of 8 bit parallel data through shift registers from top left of the display together with clock signal $(X C K)$.

When input of one row ($640 \times 3, \mathrm{R}, \mathrm{G}, \mathrm{B}$ dots) is completed, the data will be latched in the form of parallel data corresponding to the signal electrodes by the falling edge-of latch signal (LP). Then, the corresponding drive signals will be transmitted to the 640×3 lines of column electrodes of the LCD panel by the LCD drive circuits,

At this time, scan start-up signal (YO) has been transferred from the scan signal driver to the 1 st row of scan electrodes, and the contents of the data signals are displayed on the 1st row of the display face according to the combinations of voltages applied to the scan and signal electrodes of the LCD. While the data of 1st row are being displayed, the data of 2 nd row are entered, When data for 640×3 dots have been transferred, they will be latched by the falling edge of LP, switching the display to the 2 nd row,

Such data : nput will be repeated up to the 240th row of each display segment, from upper row to lower rows, to complete one frame of display by time sharing method,

Simultaneously the same scanning sequence occur at the lower panel, Then data input proceeds to the next display frame, YD generates scan signal to drive horizontal electrodes,

