

TFT LCD Preliminary Specification

MODEL NO.: G104X1-L01

APPL Head Division		
AVP	郭振隆	

QRA Dept.	APPLHD / PDD				
QNA Dept.	DDIII	DDII	DDI		
Approval	Approval	Approval	Approval		
陳永一	李汪洋	黃崑峰	林文聰		

APPL Product Market & Management Division					
Product Manager	鄭伊琳 黃富瑞 李志聖				

- CONTENTS -

R	EVISION HISTORY		3
1.	GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2.	ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE		5
3.	ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARA	CTERISTICS	6
4.	BLOCK DIAGRAM 4.1 TFT LCD MODULE		8
5.	INTERFACE PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BLOCK DIAGRAM OF INTERFACE 5.3 LVDS INTERFACE 5.4 COLOR DATA INPUT ASSIGNMENT		9
6.	INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		13
7.	OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		16
8.	DEFINITION OF LABELS 8.1 CMO MODULE LABEL		20
9.	PACKING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD		21
1(). PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS		23
11	. MECHANICAL CHARACTERISTICS		24

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 1.0	July 26 th ,'06	All	All	Preliminary Specification was first issued.
Ver 1.1	Aug. 15 th ,'06	All	All	Change Model Name B104X1-L11 → G104X1-L01
Ver 1.2	Sep. 8 th ,'06	5	2.1	Modify ABSOLUTE RATINGS OF ENVIRONMENT Storage Temperature: (-20) ~ (+65) → (-20) ~ (+70) Operating Ambient temperature: (-10) ~ (+55) → (-10) ~ (+60)
Ver 1.3	Oct. 30 th ,'06	4	1.2	Modify Fast response time 25ms → 40ms
		16	7.2	Modify Tr of Response Time 15ms → 30ms

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G104X1- L01 is a 10.4" TFT Liquid Crystal Display module with 2-CCFL backlight unit and 30-pin-and-1ch LVDS interface. This product supports 1024 x 768 XGA format and can display true 16.2M colors (6-bits colors with FRC). The inverter module for backlight is not built-in.

1.2 FEATURES

- Excellent brightness (400 nits)
- Ultra high contrast ratio (1200:1)
- Fast response time (Ton+Toff average 40 ms)
- High color saturation NTSC 57%
- XGA (1024 x 768 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Ultra wide viewing angle: 176(H)/ 176(V) (CR>10) Super MVA technology
- -180 degree rotation display option
- -Color reproduction (Nature color)

1.3 APPLICATION

- TFT LCD for Avionics and Industrial applications
- High brightness, multi-applications display

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	210.4 (H) x 157.8 (V) (10.4" diagonal)	mm	(1)
Bezel Opening Area	215.4 (H) x 161.8 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1024 x R.G.B. x 768	pixel	-
Pixel Pitch(Sub Pixel)	0.0685 (H) x 0.2055 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.2 M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (Haze 25%) Hard coating (3H)	-	-

1.5 MECHANICAL SPECIFICATIONS

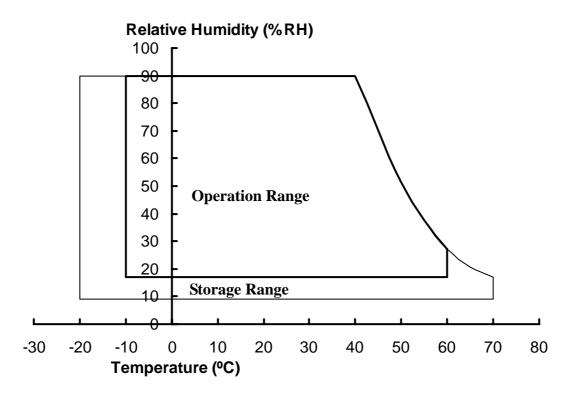
Ite	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	225	225.5	226	mm	(1)
Module Size	Vertical(V)	175.8	176.3	176.8	mm	(1)
	Depth(D)	-	10.17	10.67	mm	-
Weight		430	480	530	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Cumbal	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	(-20)	(+70)	٥C	(1)	
Operating Ambient Temperature	T _{OP}	(-10)	(+60)	۰C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	(220)	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	ı	(1.5)	G	(4), (5)	


Note (1) Temperature and relative humidity range is shown in the figure below.

- 40 °C). (a) 90 %RH Max. (Ta
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 80 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in your product design to prevent the surface temperature of display area from being over 80 °C. The range of operating temperature may degrade in case of improper thermal management in your product design.

Note (3) 2 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.

Note (4) 10 ~ 300 Hz, 10 min, 1 time each X, Y, Z.

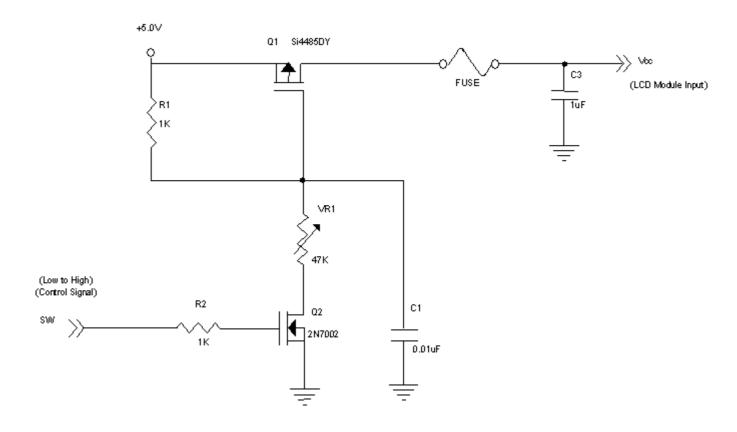
Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

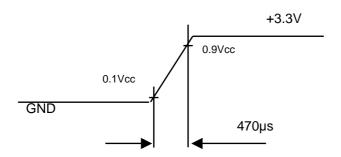
Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	Vcc	-0.3	4.0	V	(1)
Input Signal Voltage	Vin	-0.3	3.6	V	(1)

3. ELECTRICAL CHARACTERISTICS

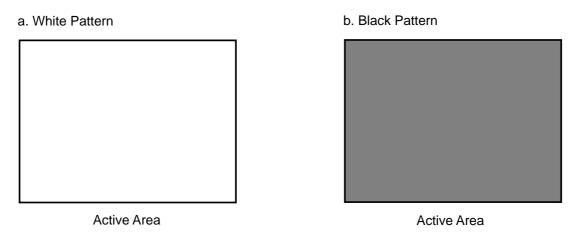

3.1 TFT LCD MODULE

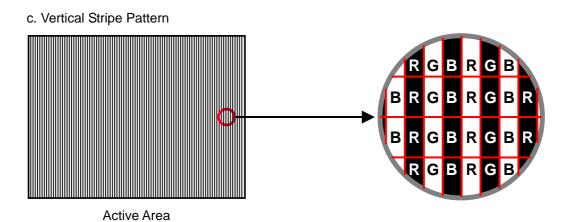
 $Ta = 25 \pm 2 \, ^{\circ}C$

	Doromoi	cor	Symbol		Value			Note
	Parameter Parameter			Min.	Тур.	Max.	Unit	Note
Power Supply Voltage			V _{cc}	3.0	3.3	3.6	V	(1)
Power Su	pply Ripple Vo	ltage	V_{RP}	-	-	100	mV	
Rush Curi	rent		I _{RUSH}	•	-	1.8	Α	(2)
White			-	1.1	1.4	Α		
Power Su	Power Supply Current Black		I _{CC}	-	0.8	-	Α	(3)
	Vertical Stripe			ı	1.0	-	Α	
LVDC	Differential In Threshold Vo		V_{LVTH}	-	-	+100	mV	
LVDS Interface	Differential Input Low		V_{LVTL}	-100	-	-	mV	
Common Input Voltage		V_{LVC}	1.125	1.25	1.375	V		
Terminating Resistor		R _T		100		ohm		
CMOS	Input High Threshold Voltage		V _{IH}	2.7	-	3.3	V	
interface	Input Low Th	reshold Voltage	V_{IL}	0	-	0.7	V	


Note (1) The assembly should be always operated within above ranges.

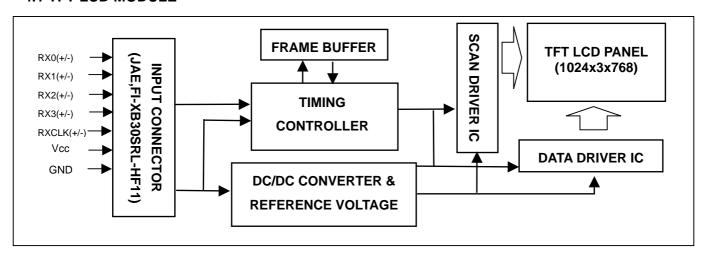
Note (2) Measurement Conditions:





Vcc rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,^{\circ}\text{Hz}$, whereas a power dissipation check pattern below is displayed.


3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note	
Parameter	Symbol	Min.	Тур.	Max.	Offic	Note
Lamp Voltage	V_W	•	460	-	V_{RMS}	$I_L = 7.0 \text{mA}$
Lamp Current	IL	6.5	7	7.5	mA _{RMS}	(1)
Laura Otantina Valtana		-	-	770(25)	V_{RMS}	(2)
Lamp Starting Voltage	Vs	-	-	960(0)	V_{RMS}	(2),
Operating Frequency	Fo	45	-	80	KHz	(3)
Lamp Life Time	L _{BL}	50,000	-	-	Hrs	(4)

4. BLOCK DIAGRAM

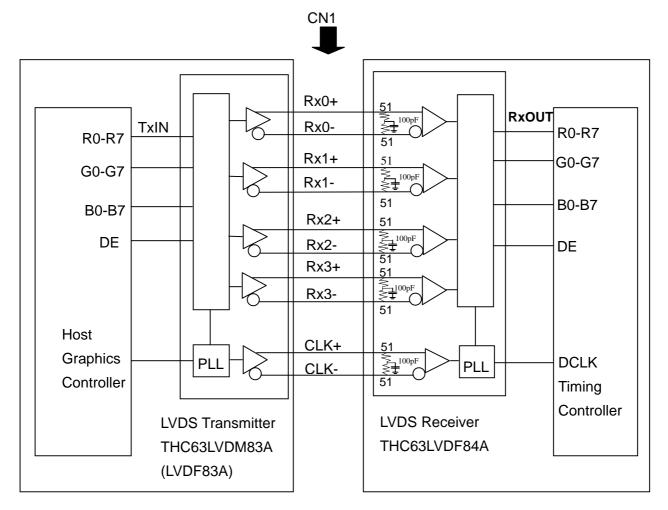
4.1 TFT LCD MODULE

5. INTERFACE PIN CONNECTION

5.1 TFT LCD MODULE

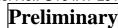
CN1 Connector Pin Assignment

Pin No.	Symbol	Description	Note
1	NC	No Connection	(2)
2	GND	Ground	
3	RX3+	Positive transmission data of pixel 3	
4	RX3-	Negative transmission data of pixel 3	
5	GND	Ground	
6	RXCLK+	Positive of clock	
7	RXCLK-	Negative of clock	
8	GND	Ground	
9	RX2+	Positive transmission data of pixel 2	
10	RX2-	Negative transmission data of pixel 2	
11	GND	Ground	
12	RX1+	Positive transmission data of pixel 1	
13	RX1-	Negative transmission data of pixel 1	
14	GND	Ground	
15	RX0+	Positive transmission data of pixel 0	
16	RX0-	Negative transmission data of pixel 0	
17	GND	Ground	
18	STV	Vertical Start Pulse Output	
19	GND	Ground	
20	NC	No Connection	
21	NC	No Connection	
22	NC	No Connection	
23	NC	No Connection	
24	RPF	Display Rotation	(3)
25	GND	Ground	
26	GND	Ground	
27	GND	Ground	
28	VCC	Power supply: +3.3V	
29	VCC	Power supply: +3.3V	
30	VCC	Power supply: +3.3V	


Note (1) Connector Part No.: JAE,FI-XB30SRL-HF11 or compatible

Note (2) Reserved for internal use. Left it open.

Note (3) Low: normal display (default), High: display with 180 degree rotation


5.2 BLOCK DIAGRAM OF INTERFACE

R0~R7 : Pixel R Data ,
G0~G7 : Pixel G Data ,
B0~B7 : Pixel B Data ,
DE : Data enable signal

Note (1) The system must have the transmitter to drive the assembly.

Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

5.3 LVDS INTERFACE

			NSMITTER	INTERF			ECEIVER	TFT CONTROL		
	SIGNAL		3LVDM83A	CONNE			63LVDF84A	INPUT		
		PIN	INPUT	Host	TFT-LCD	PIN	OUTPUT			
	R0	51	TxIN0			27	Rx OUT0	R0		
	R1	52	TxIN1			29	Rx OUT1	R1		
	R2	54	TxIN2	TA OUT0+	Rx 0+	30	Rx OUT2	R2		
	R3	55	TxIN3			32	Rx OUT3	R3		
	R4	56	TxIN4			33	Rx OUT4	R4		
	R5	3	TxIN6	TA OUT0-	Rx 0-	35	Rx OUT6	R5		
	G0	4	TxIN7			37	Rx OUT7	G0		
	G1	6	TxIN8			38	Rx OUT8	G1		
	G2	7	TxIN9			39	Rx OUT9	G2		
	G3	11	TxIN12	TA OUT1+	Rx 1+	43	Rx OUT12	G3		
	G4	12	TxIN13			45	Rx OUT13	G4		
	G5	14	TxIN14			46	Rx OUT14	G5		
	В0	15	TxIN15	TA OUT1-	Rx 1-	47	Rx OUT15	В0		
	B1	19	TxIN18			51	Rx OUT18	B1		
04 bit	B2	20	TxIN19			53	Rx OUT19	B2		
24 bit	В3	22	TxIN20			54	Rx OUT20	В3		
	B4	23	TxIN21	TA OUT2+	Rx 2+	55	Rx OUT21	B4		
	B5	24	TxIN22			1	Rx OUT22	B5		
	DE	30	TxIN26			6	Rx OUT26	DE		
	R6	50	TxIN27	TA OUT2-	Rx 2-	7	Rx OUT27	R6		
	R7	2	TxIN5			34	Rx OUT5	R7		
	G6	8	TxIN10			41	Rx OUT10	G6		
	G 7	10	TxIN11			42	Rx OUT11	G7		
	В6	16	TxIN16	TA OUT3+	Rx 3+	49	Rx OUT16	B6		
	B7	18	TxIN17			50	Rx OUT17	B7		
	RSVD 1	25	TxIN23			2	Rx OUT23	NC		
	RSVD 2	27	TxIN24	TA OUT3-	Rx 3-	3	Rx OUT24	NC		
	RSVD 3	28	TxIN25			5	Rx OUT25	NC		
	DCLK	31	TxCLK IN			26	RxCLK OUT	DCLK		
				TxCLK OUT-	RxCLK IN-					

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal

Notes(1) RSVD(reserved)pins on the transmitter shall be "H" or "L".

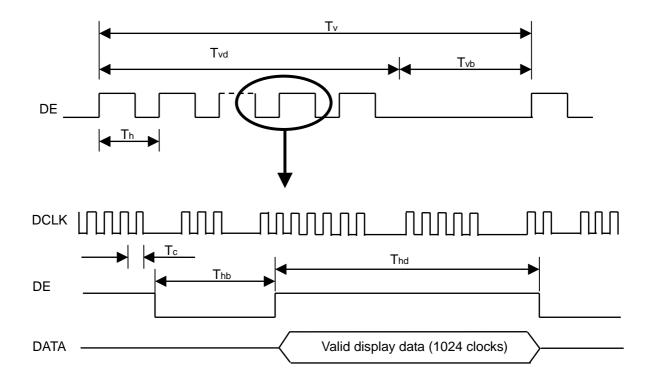
5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

COIOI V	ersus data input.	1																							
												Da	ata	Sigr	nal										
Color		Red				Green					Blue														
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	В4	ВЗ	B2	В1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
i (Cu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

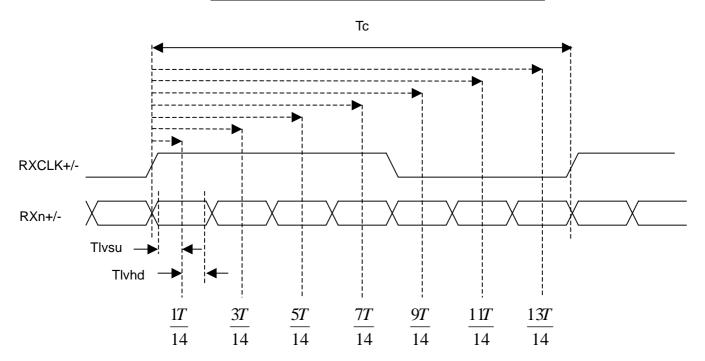
Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

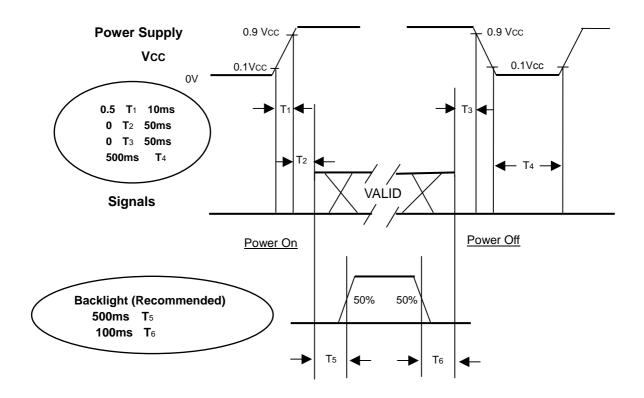

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	1/Tc	55	65	75	MHz	
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	-	200	ps	
LVDS Receiver Data	Setup Time	Tlvsu	600	-	-	ps	
LVD3 Receiver Data	Hold Time	Tlvhd	600	-	-	ps	
	Frame Rate	Fv	50	60	70	Hz	
Vertical Active Diapley Term	Total	Tv	770	806	950	Th	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	768	768	768	Th	-
	Blank	Tvb	2	38	182	Th	-
	Total	Th	1100	1344	1800	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1024	1024	1024	Tc	-
	Blank	Thb	76	320	776	Tc	-


Note (1) Since this assembly is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this assembly would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM


LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

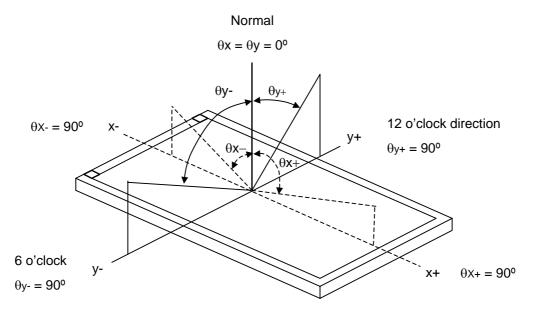
- Note (1) The supply voltage of the external system for the assembly input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or keep a high impedance.
- Note (4) T4 should be measured after the assembly has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit	
Ambient Temperature	Ta	25±2	°C	
Ambient Humidity	На	50±10	%RH	
Supply Voltage	V_{CC}	5.0	V	
Input Signal	According to typical va	CHARACTERISTICS"		
Lamp Current	ال		mA	
Oscillating Frequency (Inverter)	F_W		KHz	
Vertical Frame Rate	Fr	60	Hz	

7.2 OPTICAL SPECIFICATIONS


The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

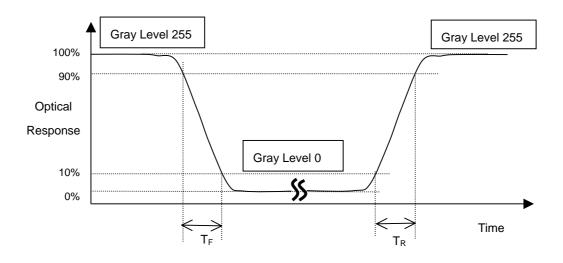
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio	Contrast Ratio				(1200)		-	(2)	
		T_R			(30)		ms	(0)	
Response IIm	Response Time				(10)		ms	(3)	
Center Lumina	ance of White	L _C			(400)		cd/m ²	(4)	
White Variation	า	δW				(1.4)	-	(7)	
Cross Talk		CT	$\theta_x=0^\circ, \ \theta_Y=0^\circ$			(4)	%	(5)	
Color Chromaticity	Red	Rx	Viewing Normal		(0.627)		-		
	Neu	Ry	Angle		(0.351)		-	(6)	
	Green	Gx		Tun	(0.304)	Тур.	-		
		Gy		Тур.	(0.566)		-		
	Blue	Bx		-0.03	(0.146)	+0.03	-	(6)	
		Ву			(0.103)		-		
	White	Wx			(0.319)				
	vvnite	Wy			(0.338)				
	Color Gamut	CG			57		%	NTSC	
	Horizontal	θ_{x} +			(88)				
Viewing	Tionzoniai	θ_{x} -	CR≥10		(88)		Deg.	(1)	
Angle	Vertical	θ_{Y} +	J Ch≥10		(88)		Deg.	(1)	
	vertical	θ_{Y} -			(88)				

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by BM5A

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.


Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

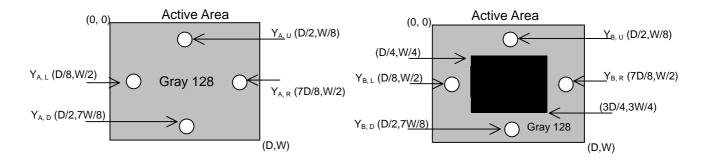
CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

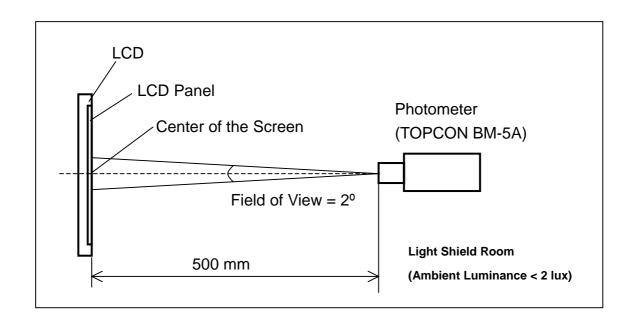
Measure the luminance of gray level 255 at center point and 5 points

 $L_C = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (7).


Note (5) Definition of Cross Talk (CT):

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

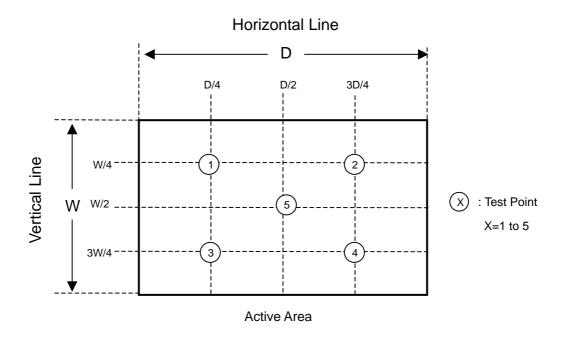
Where:


 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

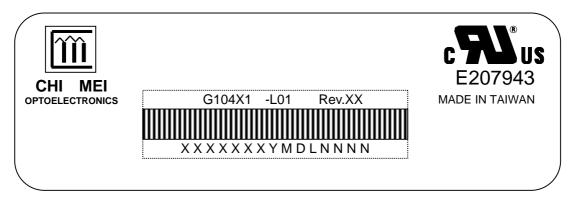
The LCD assembly should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.



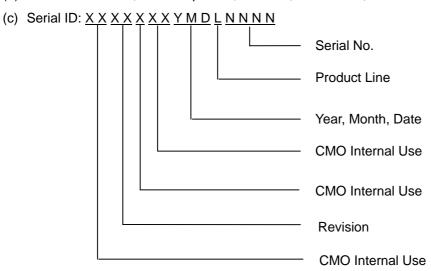
Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$



8.DEFINITION OF LABELS


8.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: G104X1-L01

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

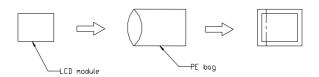
(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

9. PACKAGING

9.1 PACKING SPECIFICATIONS


(1) 30 LCD modules / 1 Box

(2) Box dimensions: 500(L) X 400 (W) X 330 (H)

(3) Weight: approximately 15.5Kg (30 LCD modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

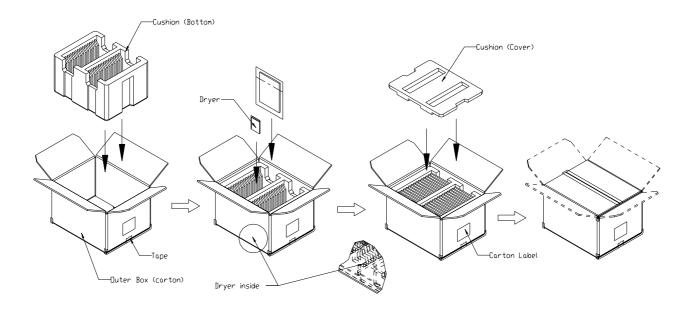


Figure.9-1 packing method

NOTES:

Corner Protector:L1170mm*50mm*50mm Pallet:L1200*W1000*H135mm Pallet Stock Dim:L1200*W1000*H1465mm Weight: Approx. 392 kg

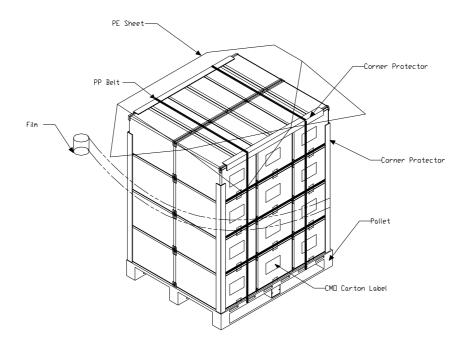
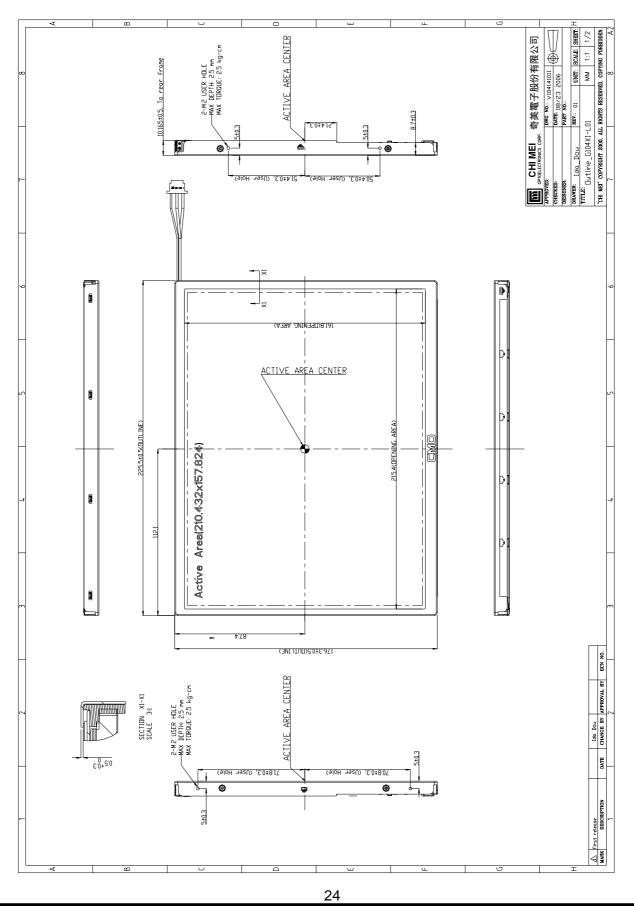


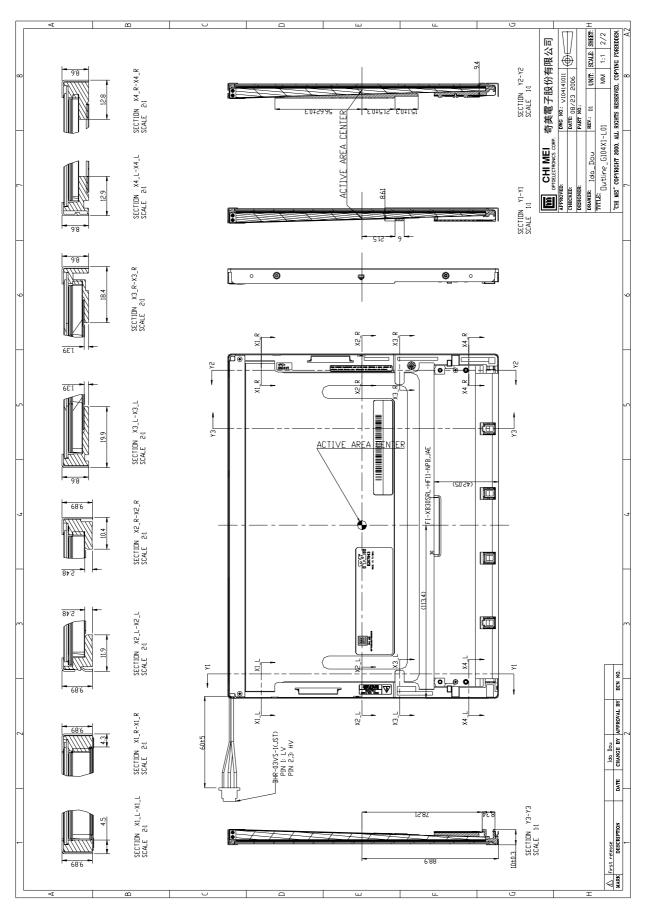
Figure. 9-2 Packing method

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS


- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS


- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

11. MECHANICAL CHARACTERISTIC

